MCR3U: Functions, Grade 11, University Preparation

Arithmetic Sequence:	$t_n = a + (n-1)d$
Geometric Sequence:	$\underline{t_n} = ar^{n-1}$
Sum of Arithmetic Series:	$\underline{S_n = \frac{n}{2}[2a + (n-1)d]}$
Sum of Geometric Series:	$\underline{S_n} = \frac{a(r^n - 1)}{r - 1}, r \neq 1$

Discrete Functions

Financial Applications

Simple Interest	I = Prt and $A = P + I$
Compound Interest	$\underline{A} = P(1+i)^n$
Present Value	<u>$PV = A(1+i)^{-n}$ or $PV = \frac{A}{(1+i)^n}$</u>
Amount of An Annuity	$\underline{A} = \frac{R[(1+i)^n - 1]}{i} \text{or} A = R\left[\frac{(1+i)^n - 10}{i}\right]$
Present Value of An Annuity	$\underline{PV} = \frac{R[1 - (1 + i)^{-n}]}{i} \text{or} PV = \frac{R[1 - (1 + i)^{-n}]}{i}$