Work

Read from Lesson 1 of the Work, Energy and Power chapter at The Physics Classroom: http://www.physicsclassroom.com/Class/energy/u5l1a.html http://www.physicsclassroom.com/Class/energy/u5l1aa.html

MOP Connection: Work and Energy: sublevel 1

- 1. An **impulse** is a force acting over some amount of time to cause a change in momentum. On the other hand, **work** is a ______ acting over some amount of ______ to cause a change in ______.
- 2. Indicate whether or not the following represent examples of work.

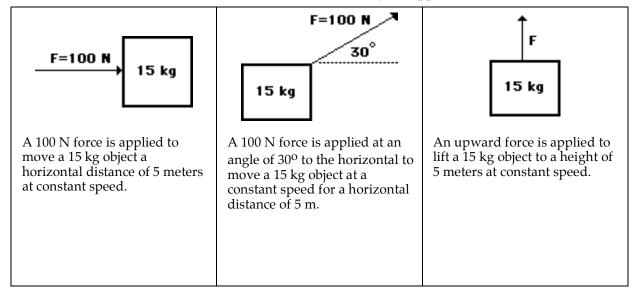
	Work Done?
a. A teacher applies a force to a wall and becomes exhausted. Explanation:	Yes or No?
 A weightlifter lifts a barbell above her head. Explanation: 	Yes or No?
 A waiter carries a tray full of meals across a dining room at a constant speed. Explanation: 	Yes or No?
d. A rolling marble hits a note card and moves it across a table. Explanation:	Yes or No?
e. A shot-putter launches the shot. Explanation:	Yes or No?

- 3. Work is a _____; a + or sign on a work value indicates information about _____.
 - a. vector; the direction of the work vector
 - b. scalar; the direction of the work vector
 - c. vector; whether the work adds or removes energy from the object
 - d. scalar; whether the work adds or removes energy from the object

4. Which sets of units represent legitimate units for the quantity *work*? Circle all correct answers.

a. Joule	b. N x m
c. Foot x pound	d. kg x m/sec

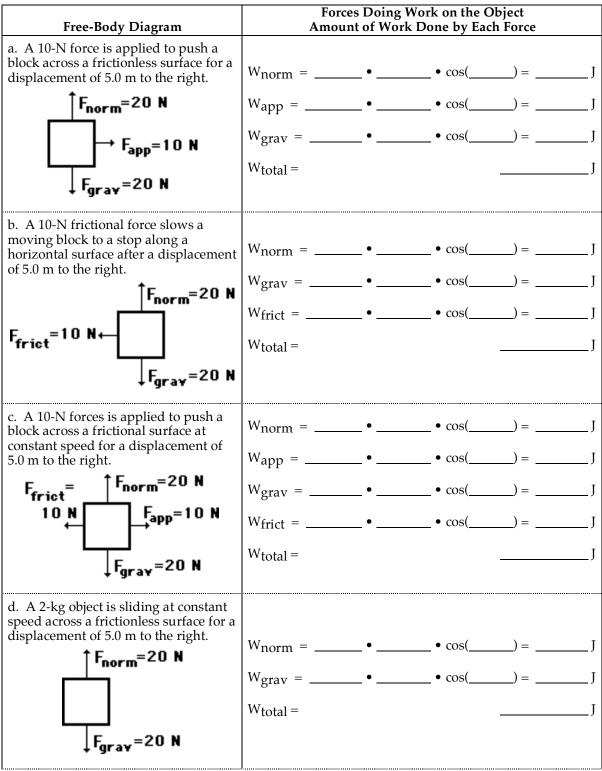
e. $kg x m/sec^2$ f. $kg x m^2/sec^2$

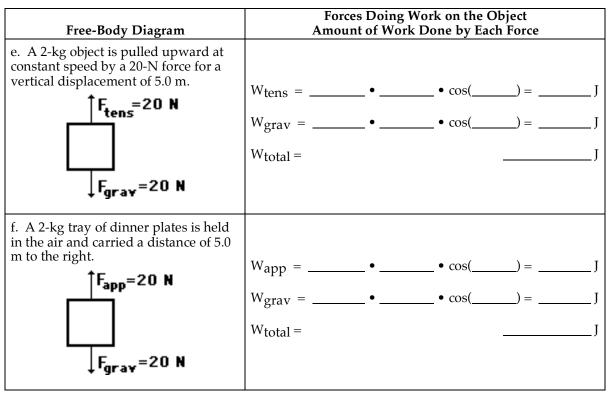


The amount of work (W) done on an object by a given force can be calculated using the formula

$\mathbf{W} = \mathbf{F} \mathbf{d} \cos \mathbf{\Theta}$

where **F** is the force and **d** is the distance over which the force acts and Θ is the angle between **F** and **d**. It is important to recognize that the angle included in the equation is not *just any old angle;* it has a distinct definition that must be remembered when solving such work problems.


5. For each situation below, calculate the amount of work done by the applied force. **PSYW**



- 6. Indicate whether there is positive (+) or negative (-) work being done on the object.
 - a. An eastward-moving **car** skids to a stop across dry pavement.
- b. A freshman stands on his toes and lifts a **World Civilization book** to the top shelf of his locker.
 - c. At Great America, **a roller coaster car** is lifted to the peak of the first hill on the Shock Wave.
 - _____ d. A catcher puts out his mitt and catches the **baseball**.
 - _ e. A falling **parachutist** opens the chute and slows down.
- 7. Before beginning its initial descent, a roller coaster car is always pulled up the first hill to a high initial height. Work is done on the car (usually by a chain) to achieve this initial height. A coaster designer is considering three different angles at which to drag the 2000-kg car train to the top of the 60-meter high hill. Her big question is: which angle would require the most work?
 ______ Show your answers and explain.

Angle	Force	Distance	Work
35°	1.15 * 10 ⁴ N	105 m	
45°	1.41 * 10 ⁴ N	84.9 m	
55°	1.64 * 10 ⁴ N	73.2 m	

 The following descriptions and their accompanying free-body diagrams show the forces acting upon an object. For each case, calculate the work done by these forces; use the format of force • displacement • cosine(Θ). Finally, calculate the total work done by all forces.

9. When a force is applied to do work on an object, does the object always accelerate? ______ Explain why or why not.

- 10. Determine the work done in the following situations.
 - a. Jim Neysweeper is applying a 21.6-N force downward at an angle of 57.2° with the horizontal to displace a broom a distance of 6.28 m.
 - b. Ben Pumpiniron applies an upward force to lift a 129-kg barbell to a height of 1.98 m at a constant speed.
 - c. An elevator lifts 12 occupants up 21 floors (76.8 meters) at a constant speed. The average mass of the occupants is 62.8 kg.