

SBI4U 2-2: Pyruvate Oxidation & Citric Acid Cycle Worksheet

- 1. Glycolysis occurs in the ______ of the cell.
- Glycolysis does/does not (circle the correct choice) require the presence of oxygen to occur and is therefore considered an aerobic/anaerobic (circle the correct choice) process.
- 3. Glycolysis starts with a single molecule of:_____
- 4. The first 3 reactions of glycolysis require the input of a total of_____ molecules of ATP.
- 5. At the end of reaction 5 a total of _____ molecules of G3P have been produced.
- 6. Reactions 6-10 occur _____ times for each molecule of glucose.
- Each molecule of G3P produces _____ NADH molecule(s) and _____ ATP molecule(s).
- 8. ATP molecules are produced by the ______ of ADP molecules.
- 9. The final product of glycolysis which go on to the next stage of cellular respiration

are ______ ATP molecules, _____NADH and _____, which are used as the

initial reactant of the next step in cellular respiration.

10. Write the net equation for glycolysis below:

11. Complete the following table for the process of glycolysis:

Glycolysis Sum<u>mary</u>

ATP molecules produced	
ATP molecules consumed	
Net ATP produced (produced – consumed)	
NADH produced	
NADH consumed	
Net NADH produced (produced – consumed)	
Overall Energy Yield	ATP: NADH: