

SBI4U 2-2: Pyruvate Oxidation & Citric Acid Cycle Worksheet

1.	Pyruvate oxidation and the citric acid cycle occur in this		
	organelle		
2.	yruvate oxidation begins with the products of glycolysis, molecules of		
	·		
3.	In pyruvate oxidation, each pyruvate molecule is converted to		
	, in the process molecules of NADH are		
	produced from each pyruvate molecule.		
4.	In the first reaction of the citric acid cycle, reacts with acetyl		
	coA to produce citrate. The citrate is then converted to succinyl coA, in the process		
	NADH are produced.		
5.	Succinyl coA is transformed into succinate, in the process, one molecule of		
	is formed, this molecule then goes on to produce molecule(s) of ATP.		
6.	$_$ molecule(s) of FADH $_2$ is produced during one turn of the citric acid cycle,		
	this is used to ultimately produce molecules of ATP.		
7.	the final series of reactions, fumarate is converted to oxaloacetate, in the process		
	molecule(s) of NADH is produced.		
8.	Oxaloacetate is the final product of the citric acid cycle, it can then react with		
	to begin the cycle again.		
9.	For every molecule of glucose, rounds of pyruvate oxidation and the citric		
	acid cycle occur.		

Part 2:

Complete the following table for the process pyruvate oxidation and the citric acid cycle for 1 molecule of glucose. Remember, that one molecule of glucose produces 2 pyruvate molecules at the end of glycolysis. Therefore, one molecule of glucose will generate 2 pyruvate oxidation reactions and 2 turns of the citric acid cycle.

Pyruvate Oxidation and the Citric Acid Cycle

(From 1 molecule of glucose)	Pyruvate Oxidation	Citric Acid Cycle
ATP molecules produced		
NADH produced		
FADH ₂ produced		
Overall Energy Yield	ATP NADH FADH ₂	ATP NADH FADH ₂