Ionic Compounds

 Chemical compounds are all around us, and exist in incredible abundance. Over 10 million chemical compounds have already been identified and more are discovered or created each and every day. There are two main types of chemical compounds, molecular compounds In this activity you will learn about how one type: Ionic Compounds are formed.

A chemical compound is a chemical substance made up of two or more different elements chemically bonded to each other. This chemical bond describes the force of attraction between two atoms or ions that holds them together. A chemical bond is an invisible force that acts as a sort of glue, holding atoms together in a compound in two different ways: as ionic bonds or as covalent bonds.

Ionic compounds form as a result of ionic bonds formed between ions. Recall that ions form when neutral atoms gain or lose electrons and certain elements are more likely to either gain or lose electrons depending on their valence electron arrangement.

Metals in the first 2 groups of the periodic table, such as sodium and potassium are more likely to lose electrons to form positively charged cations. While other elements, such as the **non-metals**, like oxygen and chlorine, in groups 15-17 are likely to gain electrons, forming negatively charged anions.

 One of the most common ionic compounds is called sodium chloride (NaCl), otherwise known as table salt. Sodium chloride is formed between postivie ions of sodium (Na⁺) and negatively charged ions Chloride (Cl⁻). The formation of these ions can be represented using Lewis symbols:

Click to See Formation of Na⁺ ion

Sodium is a metal that tends to lose electrons, forming an Cation:

$Na \longrightarrow [Na]^+ + e^-$

Chlorine is a non-metal that tends to gain electrons, forming an anion.

Click to See Formation of Cl⁻ ion

Sodium is a metal that tends to lose electrons, forming an **cation**. When cations are formed, the ion is shown in square brackets with the charge as a superscript:

$Na \longrightarrow [Na]^+ + e^-$

Chlorine is a non-metal that tends to gain electrons, forming an **anion**. When anions are formed, the ion is shown in square brackets with the full octetet represented and the charge written as a superscript:

 An ionic bond forms when a non-metal atom removes an electron from a metal atom. When this transfer of electrons occurs, a cation and anion are formed, the two are then attracted to each other due to the force of attraction between positive and negatively charged atoms. The bond between a positive ion and a negative ion is called an IONIC BOND.

What happens when ionic bonds form between atoms that lose or gain more than one electron? For example, consider an ionic compound forming between magnesium and chlorine. Magnesium tends to lose 2 electrons, forming [Mg]²⁺ while chlorine only tends to gain 1 electron, forming [Cl]⁻. What type of ionic compound will these ions form?

1	group	1																		18
	1.0079	94 1																		4.002602 2
period 1	Η				average mass (in u) 55.845 76 atomic number														He	
	Hydro	ogen	2							4	20				13	14	15	16	17	Helium
-	0.941 T •	3	9.012182	4			,		. T	20					10.811 5	6	14,0067 7	15.9994 8	18.998403 9	20.1797 10
2	L1	L	Ве				ch	emical symb		'e					В	C	N	0	F	Ne
	Lithiu: 22.989	m 976 11	eryllium	12				Date		n					26.98153 13	Carbon 28.0855 1 /	Nitrogen 30.97696 15	Oxygen 32.065 16	55,453 17	Neon 39.948 18
3	NL	<u> </u>	Ma	12											A1	C: 17	D	C 10		h 10
-	IN a		Magnesium		3	4	5	6	7	8	9	10	11	12	Aluminium	Silicon	F Phosphorus	Sulfur	Chlorine	Argon
	39.098	⁸³ 19	40	20	44.95591 21	47.867 22	50.9415 23	51.9962 24	54.93804 25	55.845 26	58.93319 27	58.6934 28	63.546 29	65.38 30	^{69.723} 31	72.64 32	74.92160 33	78.96 34	7.01	83.798 36
4	K		Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	Potass	ium	Calcium		Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
	85.467	78 37	87.62	38	^{88,90585} 39	^{91.224} 40	92.90638 41	95.96 42	(98) 43	101.07 44	102.9055 45	106.42 46	107.8682 47	^{112,441} 48	^{114,818} 49	118.710 50	121.760 51	127.60 52	126.9044 53	131.293 54
5	Rł	b	Sr		Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	Rubidi	ium	Strontium		Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	Iodine	Xenon
	132.90	⁰⁵⁴ 55	137.327	56	^{174,9668} 71	178,49 72	180.9478 73	183.84 74	186.207 75	190.23 76	192.217 77	195.084 78	196.9665 79	200.59 80	204.3833 81	207.2 82	208.9804 83	(210) 84	(210) 85	(220) 86
6	C	S	Ba		Lu	Ht	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	B1	Ро	At	Rn
	(223)	m 87	(226)	88	(262) 103	(261) 104	(262) 105	(266) 106	(264) 107	(277) 108	(268) 100	(271) 110	(272) 111	(285) 112	(284) 113	(289) 114	(288) 115	(292) 116	Astatine 117	(294) 118
7	Fr	• • • •	Pa		I r	D f	Dh	Sa	Bh	He	Mt	De	Ra	Cn	Int	FI	Llun	IV	Ilue	Lluo
	Franci	ium	Radium		Lawrencium	Rutherfordium	Dubnium	Seaborgium	Bohrium	Hassium	Meitnerium	Darmstadium	Roentgenium	Copernicium	Ununtrium	Flerovium	Ununpentium	Livermorium	Ununseptium	Ununoctium
		_																		
128 005		140.116	50 140	0076 50	141212 60		100.10	10.000 60	10200 64	100000 60	102.000	164.0303	1/2 2/2	100000 000	171011 80	1	ollasti -	- stale	- matallaida	
158.9054	• 57	140.110	58 140.	⁹⁰⁷⁸ 59	144.242 60	(145) 61	130.36 62	¹³¹³⁶⁴ 63	137.23 64	138.9235 65	102.300 66	164.9505 67	107-239 68	108.9542 69	× 71		alkalin	t metals	nonmetals	
La		Ce	P	r Iodumium	Na	Pm	Sm	Eu	Gadalinium	1D Tarbium	Dy	HO	Er	Im	YD		other m	ictals	halogens	
(227)	89	232.0380	90 231	0358 Q1	238.0289 Q2	(237) Q3	(244) Q4	(243) Q5	(247) 96	(247) 97	(251) Q8	(252) QQ	(257) 100	(258) 101	(259) 102		transiti	on metals	noble gases	
Ac	Ac Th		h Pa		U Nn		Du	۸m	Cm	BL	Cf	Fe	Em	Md	No		lanthan	oids	unknown el	lements
Actinium The		Thorium Protactinium		ectinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium		actinoi	tinoids redicactive ciements masses in parenthese		ents izo e theses

Click for the Step-by-Step Solution

Step 1. Wrote the Lewis structure for each atom of the combining elements.

Step 1. Wrote the Lewis structure for each **atom** of the combining elements.

Mg•

Step 2. Determine how many electrons each atom is likely to gain or lose to form a full valence shell.

Step 2. Determine how many electrons each atom is likely to gain or lose to form a full valence shell: Magnesium is likely to lose 2 electrons and chlorine is likely to gain 1 electron to form full valence shells.

$$Mg \bullet \longrightarrow [Mg]^{2+} \bullet \bigcup^{\bullet} \bullet \bigoplus^{\bullet} [: \bigcup^{\bullet} \bullet]^{-}$$

Step 3. Determine the ratio of each ion needed to produce a neutral molecule.

Step 3. Determine the ratio of each ion needed to produce a neutral molecule:

Since each magnesium ion has a charge of +2 and each chloride ion has a charge of -1, 2 chloride ions are required for every 1 magnesium ion to produce a neutral molecule.

> Click to See Lewis Structures of this Compound Forming

Formation of MgCl₂:

$Mg \bullet +2 \bullet C \stackrel{\bullet}{:} \longrightarrow [:C]:]^{-}[Mg]^{2+}[:C]:]^{-}$

Step 4. Write the chemical formula for the ionic compound. The symbol for the metal (Mg) is written first followed by the symbol for the non-metal (Cl). The number of each of the ions required to produce the neutral molecule is written as a subscript. (Note: If the ratio of one of the ions is 1, no number subscript is necessary)

Click to See Chemical Formula

Step 4. Write the chemical formula for the ionic compound. Since this ionic compound requires 2 Cl⁻ ions for each Mg²⁺ion, the chemical formula is:

Click for a Sample Question to Test Your Understanding

Test your understanding

- 1. Draw Lewis symbols to show the formation of bonds within an ionic compound of potassium oxide.
- 2. Write the chemical formula for potassium oxide.

Click for the Solution

1. Draw Lewis symbols to show the formation of bonds within an ionic compound of potassium oxide.

2. Write the chemical formula for potassium oxide.

Success!

You have reached the end of this activity. You will know that you have achieved the goals for this activity when you can describe how ionic compounds form through ionic bonding. You will also be able to determine the chemical formulae for ionic compounds and draw Lewis structures representing the formation of ionic compounds.

Back to Start