Using the GRASS Method to Solve Problems

What is the GRASS method?

• The GRASS method is an organizational tool that allows students to solve problems in an organized and logical way.

Why Use the GRASS Method?

- The GRASS method is useful for both students and teachers.
- For students, using the GRASS method gives students a set of guidelines that helps:
 - organize their solutions
 - uncover the relevant information in a problem
 - find the ultimate goal of the problem
 - guide students to the proper tools (equations) to use in solving the problem
- The GRASS method also allows students to clearly demonstrate their understanding of the concepts being assessed.

Why Use the GRASS Method?

- For teachers, the GRASS method has several benefits:
 - makes sure that all students are presenting their solutions in a uniform format.
 - allows teachers to see the thought process that students are using to solve problems.
 - allows teachers to identify areas where students may be struggling or may need additional support.

Using the GRASS Method

Given - identify the information GIVEN in the problem.

Required – identify the information REQUIRED (what are you trying to determine).

Analyze – ANALYZE (figure out) which equation, rule or principle applies to this type of problem.

Solve – if using an equation, substitute the values given in the problem and SOLVE the equation.

Statement – rewrite your answer as a STATEMENT using a brief sentence that clearly answers the problem.

How to Use the GRASS Method

When iron is exposed to air, it corrodes to form red-brown rust. Rust is iron (III) oxide (Fe_2O_3). How many moles of iron (III) oxide are contained in 92.2g of pure Fe_2O_3 ? Round your final answer to three significant digits.

Mass $Fe_2O_3 = 92.2g$

Given

Required

Analyze

Solve

Statement

When iron is exposed to air, it corrodes to form red-brown rust. Rust is iron (III) oxide (Fe₂O₃). How many moles of iron (III) oxide are contained in 92.2g of pure Fe₂O₃? Round your final answer to three significant digits. Given:

Given

Required

Required:

Analyze

Solve

Statement

 $n Fe_2 O_3 = ? mol$ $M Fe_2O_3 = ? g/mol$

Mass $Fe_2O_3 = 92.2g$

Given Required Analyze Solve

Statement

Given:

Mass $Fe_2O_3 = 92.2g$

Required:

n $Fe_2O_3 = ? mol$ M $Fe_2O_3 = ? g/mol$

Analyze: $n = \frac{m}{M}$

Given

Required

Analyze

Solve

Statement

Given: Mass $Fe_2O_3 = 92.2g$ **Required:** $n Fe_2 O_3 = ? mol$ $M Fe_2O_3 = ? g/mol$ Analyze: m $n = \frac{1}{M}$ Solve: $M Fe_2O_3 = 2(55.8g/mol) + 3(16g/mol)$ = 159.6 g/molm n = M 92.2g

$$n = \frac{0}{159.6g/mol}$$

n = 0.577769 mol Fe₂O₃ = 0.578 mol

Given Required Analyze Solve

Statement

Mass $Fe_2O_3 = 92.2g$ **Required:** $n Fe_2O_3 = ? mol$ $M Fe_2O_3 = ? g/mol$ Analyze: m $n = \frac{1}{M}$ Solve: $M Fe_2O_3 = 2(55.8g/mol) + 3(16g/mol)$ = 159.6 g/molm n = M 92.2g $n = \frac{159.6 \text{g/mol}}{159.6 \text{g/mol}}$ $n = 0.577769 \text{ mol Fe}_2O_3 = 0.578 \text{ mol} \leftarrow round to 3 significant digits}$

Statement:

Therefore, there are 0.578 moles of iron (III) oxide contained in 92.2g of pure Fe_2O_3 .