

Acid and Base Worksheet - Answers

- Using your knowledge of the Brønsted-Lowry theory of acids and bases, write equations for the following acid-base reactions and indicate each conjugate acid-base pair:
 - a) HNO₃ + OH⁻ → H₂O + NO₃⁻ HNO₃ and NO₃⁻ make one pair OH⁻ and H₂O make the other
 - b) CH₃NH₂ + H₂O → CH₃NH₃⁺ + OH⁻ CH₃NH₂ and CH₃NH₃⁺ make one pair OH⁻ and H₂O make the other
 - c) $OH^- + HPO_4^{-2} \rightarrow H_2O + PO_4^{-3}$ HPO_4^{-2} and PO_4^{-3} make one pair OH^- and H_2O make the other
- 2) The compound NaOH is a base by different theories of acids & bases. However, each of the theories describes what a base is in different terms. Use your knowledge of these theories to describe NaOH as an Arrhenius base and a Brønsted-Lowry base.
 - NaOH is an Arrhenius base because it creates OH⁻ ions when placed in water.
 - NaOH is a Brønsted-Lowry base because it accepts H⁺ ions from acids.
- Write an equation for the reaction of potassium metal with hydrochloric acid.
 2 K + 2 HCl → 2 KCl + H₂
- 5) Borane (BH₃) is a basic compound, but doesn't conduct electricity when you dissolve it in water. Explain this, based on the definitions of acids and bases that we discussed in class.

Borane is a Lewis base, but a negligibly strong Brønsted-Lowry base.

6) Write the names for the following acids and bases:

a) KOH potassium hydroxide

b) H₂Se **hydroselenic acid**

c) $C_2H_3O_2H$ acetic acid

d) $Fe(OH)_2$ iron(II) hydroxide

e) HCN hydrogen cyanide or hydrocyanic acid

7) Write the formulas for the following chemical compounds (remember, you've still got a pop quiz coming up before the end of next week!)

a) ammonium sulfate (NH₄)₂SO₄

b) cobalt (III) nitride CoN

c) carbon disulfide CS2

d) aluminum carbonate Al₂(CO₃)₃

e) chlorine Cl₂