

SBI4U Unit 2 Test: Metabolic Processes (50 Marks Total)

Name:			
Signature:_	 		

Marks obtained:

Category	Total Marks	Possible Marks
Knowledge/Understanding (K/U)		10
Thinking/Investigation (T/I)		15
Application (A)		15
Communication (C)		10
Total		50
Percentage		

SECTION 1: Knowledge/Understanding - Multiple Choice (Questions 1-10)

[K/U, 10: 1 each]

Write your section 1 answers here:

Question	1	2	3	4	5	6	7	8	9	10
Answer										

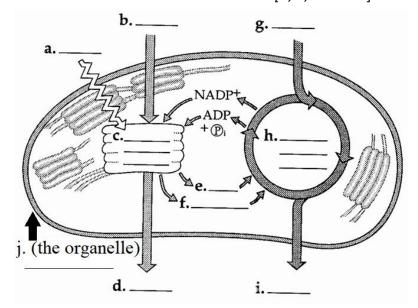
K/U	T/I	Α	С
/10			
/10			

NOTE: FOR SECTIONS 1 WRITE YOUR ANSWERS IN THE TABLES ON THE FIRST PAGE OF THIS TEST

SECTION 1: Knowledge/Understanding - Multiple Choice (Questions 1-10)

[K/U, 10: 1 each]

- 1. Light energy is converted to chemical energy through the process of
 - a) cellular respiration.
 - b) photosynthesis.
 - c) fermentation.
 - d) glycolysis.
- 2. As light intensity increases, the rate of photosynthesis
 - a) increases indefinitely.
 - b) decreases indefinitely.
 - c) increases until the light saturation point is reached.
 - d) decreases until the light saturation point is reached.
- 3. The total amount of ATP that a cell gains for each glucose molecule depends on the presence of
 - a) water.
 - b) oxygen.
 - c) carbon dioxide.
 - d) glucose.
- 4. The energy used in the Calvin cycle for the production of sugar molecules comes from
 - a) ATP only.
 - b) ATP and NADPH.
 - c) the Krebs cycle.
 - d) carbon dioxide.
- 5. When glycolysis occurs,
 - a) a molecule of glucose is split.
 - b) photosynthesis begins.
 - c) a molecule of glucose is formed.
 - d) pyruvates are combined.


- 6. Cells produce ATP most efficiently in the presence of
 - a) water.
 - b) oxygen.
 - c) carbon dioxide.
 - d) glucose.
- 7. Water is an end product in
 - a) lactic acid fermentation.
 - b) alcoholic fermentation.
 - c) the Krebs cycle.
 - d) the electron transport chain in aerobic respiration.
- 8. ATP is composed of a nitrogenous base, a sugar, and
 - a) one phosphate group.
 - b) three phosphate groups.
 - c) two phosphate groups.
 - d) four phosphate groups.
- 9. A cell that requires a lot of energy might contain large numbers of
 - a) chromosomes.
 - b) mitochondria.
 - c) vacuoles.
 - d) lysosomes.
- 10. Light energy: excite electrons is similar to:
 - a) metabolism: autotroph
 - b) carbon: electron
 - c) ATP and NADPH: carbon dioxide fixation
 - d) energy: food

SECTION 2: Application - Labeling (Questions 11-12)

[A, 11: 1 each]

11. Label the following diagram about photosynthesis by writing the letter associated with each term on the line below. [A, 5; 0.5 each]

 Light reactions
 Calvin Cycle
 NADH
 Light
 chloroplast
 CO ₂
 O ₂
 Sugar
 ATP
H ₂ O

 ${\bf 12.}\ Label\ the\ following\ diagram\ about\ cellular\ respiration.$

[A, 6; 0.5 each]

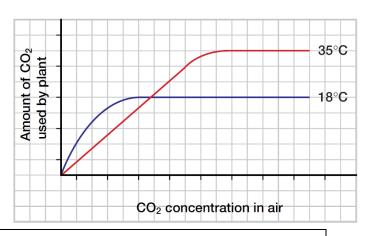
H	Н	7
F C G	D K (location)	E J (location)
A	B A B	A

Glucose
 ATP
 Glycolysis
Kreb Cycle
 Electron Transport Chain
Pyruvate
NADH
FADH2
Inner Membrane
Matrix
Cytoplasm

 CO_2

K/U	T/I	Α	С
		/11	

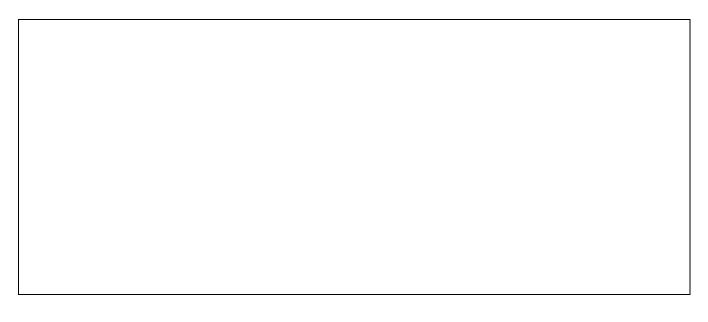
SECTION 3: Thinking/Investigation, Application & Communication – Short Answer (Questions 13-19) [T/I, 15; A, 4; C, 10]


13. A strain of cells undergoes a mutation that increases the permeability mitochondrial membrane to hydrogen ions.a) What effect would you expect this mutation to have on the processb) Assuming the mutant cells can survive, how might the metabolic rediffer from those of a non-mutant strain of the same variety?	ss of cellular respiration?
14. During carbon fixation in the Calvin cycle, CO_2 combines with RuBP. O with RuBP and can prevent CO_2 from reacting. If the ambient temper increase or reduce glucose production? Make a graph help with your	ature is increased, will this

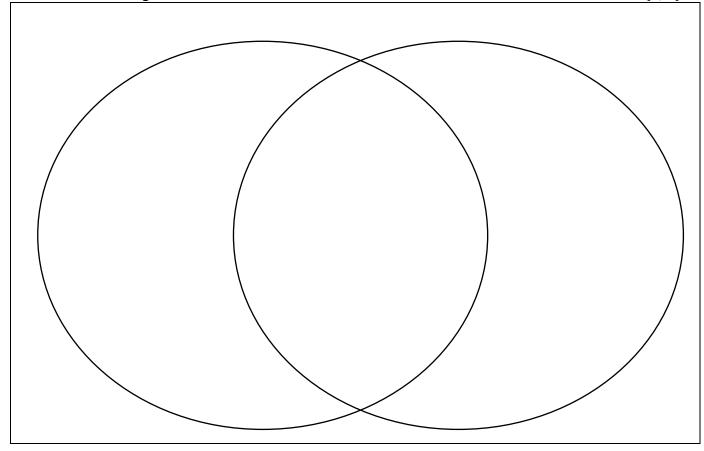
K/U	T/I	Α	С
	/0		
	/9		

15. Mature human red blood cells do not have any mitochondria, yet they live for w which respiration processes red blood cells most likely use. What metabolic processes	
expect to find in red blood cells that would support your prediction?	[T/I, 3]

16. You are planning to build a greenhouse for the school. To ensure maximum growth of plants, the greenhouse needs extra carbon dioxide and heat at a reasonable cost. This graph shows the effect of temperature and carbon dioxide on plant growth (as measured by glucose production.) Write a summary of these data, indicating the best temperature and carbon dioxide concentration for the greenhouse. Be clear and precise. [T/I, 3]


SRI411	Unit 2	Test.	Metabolic	Processes
<i>30140</i>	OIIIL Z	icst.	IVICTUDUIL	FIULESSES

K/U	T/I	Α	С
	/6		


Page **6** of **8**

17. Pyruvate is available as a dietary supplement. Explain the possible results of adding pyruvate to your diet. [A, 4]

18. Write at least 3 difference and two similarities between aerobic and anaerobic respiration in the Venn Diagram below. [C, 5]

SBI4U Unit 2 Test: Metabolic Processes

K/U	T/I	Α	С
		,	,
		/4	/5

Page **7** of **8**

19. Explain, with diagrams, how high levels of oxygen reduce the effectiveness of th Explain how alternative forms of carbon fixation avoid this problem.	e Calvin cycle. [<i>C, 5</i>]

K/U	T/I	Α	С
			/_
			/5